

ОПТИКО-ФИЗИЧЕСКИЙ ОТДЕЛ

В 1967 году в недавно образованный Институт космических исследований Академии наук СССР из Московского института инженеров геодезии, аэрофотосъемки и картографии перешла группа сотрудников. Эта группа развернула работы по космическим исследованиям в видимой и ближней ИК областях спектра электромагнитных волн, созданию уникальной бортовой аппаратуры, изучению с космических аппаратов (КА) Земли и других тел Солнечной системы, разработке алгоритмов и программ обработки и анализа получаемых космических видеоданных. В 1973 году на базе этой группы

был образован Отдел исследова-

ний Земли из космоса. В 1980 году он был переименован в отдел Оптико-физических исследований (Оптико-физический отдел). Изменилось и направление работ – приоритетными объектами исследований стали комета Галлея, Марс и его спутник Фобос. Перестройка в России кардинально изменила дальнейшую жизнь отдела. Используя большой опыт в области приборостроения, отдел переключился на разработку служебной аппаратуры – приборов прецизионного определения астроориентации КА и бортовых процессоров, обеспечивающих реше-

С 1999 года 21 звездный прибор семейства БОКЗ управлял ориентацией ИСЗ различного типа и

динатор БОКЗ.

ние этих задач в реальном времени. И уже в 1999 году на орбите работал первый звездный коор-

Международной космической станции (МКС). Создаются новые модификации приборов БОКЗ, а также системы на их основе, которые позволяют определять ориентацию и местоположение КА на орбите.

Возобновились и получили дальнейшее развитие работы по созданию аппаратуры дистанционного зондирования Земли для метеорологических и природно-ресурсных спутников, а также по внедрению космических технологий в практику аэросъемки.

В 2000 году отдел вернулся и к научным космическим исследованиям — разработке научной программы и созданию приборов для миссии "Фобос-грунт", планируемой на 2009 год.

Создал и возглавил отдел Зиман Ян Львович. В 1988 году ему на смену пришел Аванесов Генрих Аронович. С 2003 года отделом руководит Форш Анатолий Анатольевич.

Зиман Ян Львович

главный научный сотрудник, зам. зав. отделом, д.т.н., профессор, заслуженный деятель науки РФ, Лауреат Государственной премии СССР

Аванесов Генрих Аронович

главный научный сотрудник, зам. зав. отделом, д.т.н., профессор, заслуженный деятель науки РФ, Лауреат Ленинской премии СССР

Форш Анатолий Анатольевич

зав. отделом, к. ф.-м. н., Лауреат Государственной премии Молдавской ССР

ОСНОВНЫЕ НАПРАВЛЕНИЯ РАБОТ

_____ Исследования небесных тел Солнечной системы

• Исследования Земли и ее экологии

______ Определение в реальном времени параметров орбиты и ориентации КА

Разработка программно-алгоритмического обеспечения бортовых приборов, их наземной отработки и анализа получаемых видеоданных

Калибровка, испытания и моделирование работы в космосе бортовых приборов

наша история

1968 – 1971

Изучение топографии и рельефа участков поверхности Луны по ТВ-изображениям с Луноходов 1 и 2. Уточнение размеров и формы Луны по фототелевизионным изображениям ее обратной стороны, полученным с АМС "Зонд".

1970 **–** 1972 **–**

На первой пилотируемой орбитальной станции "Салют" проведен эксперимент по синхронной фотосъемке участков звездного неба и земной поверхности для отработки методики прецизионного определения ориентации КА и координатной привязки космических снимков.

Съемка проводилась модернизированными аэрофотоаппаратами АФА БА-210.

1973 – 1982 -

Создание летающей лаборатории на самолетах Ил-14 и АН-30 для отработки методики проведения многозональных фотографических и оптико-электронных аэросъемок, моделирующих съемки Земли из космоса.

Разработка математического обеспечения обработки и тематической интерпретации получаемых видеоспектрометрических данных в интересах институтов наук о Земле.

1974 – 1978

Создание совместно со специалистами ГДР космического фотоаппарата МКФ-6 и его летноконструкторские испытания на космическом корабле "Союз-22".

Отработка совместно со специалистами МГУ методики тематической интерпретации многозональных космических снимков.

Внедрение аппаратов МКФ-6 в практику съемок земной поверхности, проводимых с пилотируемых орбитальных станций в интересах решения задач наук о Земле и хозяйственных отраслей.

1978 – 1984 $_$

Создание первой отечественной сканирующей восьмизональной цифровой ТВ-системы "Фрагмент" и ее опытная эксплуатация в течение четырех лет на КА "Метеор-Природа".

Проведение цифровой обработки и тематической интерпретации переданной с КА видеоинформации.

1980 **–** 1986 **–**

Разработка совместно с венгерскими и французскими специалистами телевизионной системы "ВЕГА" на матричных ПЗС для съемки с АМС ВЕГА—1 и 2 кометы Галлея и ее ядра.

Участие в создании платформенного комплекса для съемочной аппаратуры.

В результате обработки полученных изображений была определена форма и размеры ядра, уточнена структура, абсолютные яркости и фотометрические характеристики его поверхности и джетов; рассчитаны фотометрические характеристики и выполнена томографическая реконструкция комы.

1981 - 2001 _

Создание совместно со специалистами ГДР системы звездных координаторов "АСТРО" с матричными ПЗС и бортовыми процессорами для определения ориентации орбитальной станции "Мир" по ТВ-изображениям звездного

Система "АСТРО" проработала более десяти лет на борту станции до ее затопления в 2001 году.

1986 – 1989 💄

Создание совместно со специалистами Болгарии и ГДР видеоспектрометрического комплекса "Фрегат".

По полученным с АМС "Фобос" изображениям были исследованы фотометрические и спектральные характеристики поверхности Фобоса и уточнены его геологические карты, состав и внутреннее строение.

1987 – 1991

Разработка теории стабилизации КА давлением солнечного света. Сконструирована базовая модель Малого космического аппарата (МКА) "Регата" с солнечным парусом, обеспечивающим поддержание с высокой точностью ориентации на Солнце его продольной оси.

Предложены три модификации МКА для астрометрии, плазмо-физических исследований, наблюдения Солнца и патрулирования Солнечной активности.

1989 – 1996

Создание для исследования атмосферы и поверхности Марса платформенного комплекса "Аргус" с двумя многоспектральными ТВ системами, разработанными совместно с немецкими специалистами, и навигационной камерой первым малогабаритным звездным координатором.

После неудачного выведения на орбиту КА "Марс-96" затонул в водах Тихого океана.

1997 – 2007

Разработка и внедрение в практику космических полетов звездных координаторов БОКЗ (блоков определения координат звезд), работающих в контуре управления ориентацией МКС, Ямал, Ресурс-ДК и других КА.

2004 - 2007

Разработка и изготовление многоспектральных съемочных устройств для исследования поверхности суши и акваторий с метеорологических и природно-ресурсных КА.

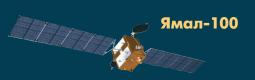
наша история

2005-...

Разработка для миссии "Фобос-Грунт" бортовых систем решения навигационных задач, исследований Марса и Фобоса и управления комплексом научной аппаратуры.

НАВИГАЦИОННЫЕ СИСТЕМЫ

НАВИГАЦИОННЫЕ СИСТЕМЫ


ЗВЕЗДНЫЕ КООРДИНАТОРЫ

Приборы семейства БОКЗ предназначены для высокоточного определения в реальном масштабе времени параметров трехосной ориентации КА по изображениям произвольных участков звездного неба.

Приборы БОКЗ представляют собой моноблок, содержащий цифровую телевизионную камеру на ПЗС-матрице, вычислительное устройство на сигнальном процессоре и источник вторичного электропитания.

С 1999 года 21 звездный прибор семейства БОКЗ был выведен на околоземные орбиты на МКС и 10 российских КА различного типа. До конца 2010 года планируется подготовить по действующим контрактам еще около 40 приборов БОКЗ разных модификаций.

БОКЗ

Модификация	БОК3	БОКЗ-М	БОК3-М24	БОК3-2М	БОКЗ-МФ	БОК3-3
Масса, кг	4,5	4,0	3,2	2,0	2,0	0,6
Энергопотребление, Вт	11,2	11,2	10,0	8,0	8,0	3,0
Габариты, см	45x23x20	37x23x23	30x23x23	30x20x20	20x20x20	17x10x10
Допустимая скорость						
углового движения КА, °/сек	0,15	0,5	1,5	2,0	2,0-4,0	> 2,0
Время первичного						
обнаружения без априорной						
информации, сек	30	30	10	10	10	6
Частота обновления						
информации						
об ориентации, Гц	0,3	0,3	1,0	1,0	1,0	10
Выходные данные	Кват	ернион ориен	тации (матриі	ца направляю	щих косинусо	в)
Точность $\sigma_{X,y}/\sigma_{Z'}$ угл.сек	2 / 20	2 / 20	5 / 12	5 / 12	5 / 12	5 / 12

Радиационная стойкость компонентов и материалов позволяет применять приборы на околоземных, геостационарных, высокоэллиптических и межпланетных орбитах

2004

БОК3-2М


2006

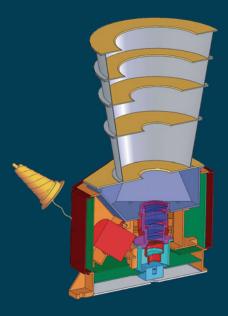
БОКЗ-МФ

2008

БОКЗ-3

НАВИГАЦИОННЫЕ СИСТЕМЫ

НАВИГАЦИОННЫЕ СИСТЕМЫ


УНИВЕРСАЛЬНЫЙ НАВИГАЦИОННЫЙ ПРИБОР

Универсальный навигационный прибор (УНП) предназначен для определения в реальном времени параметров орбиты и ориентации космических аппаратов. Он разрабатывается оптико-физическим отделом при участии смежных организаций на базе приборов БОКЗ и встраиваемых в них приемников сигналов навигационных спутников и прецизионных датчиков угловых скоростей (ДУСов) на основе волновой гироскопии.

Универсальный навигационный прибор планируется использовать в системах управления движением различных КА.

Универсальный навигационный прибор позволит решать следующие задачи:

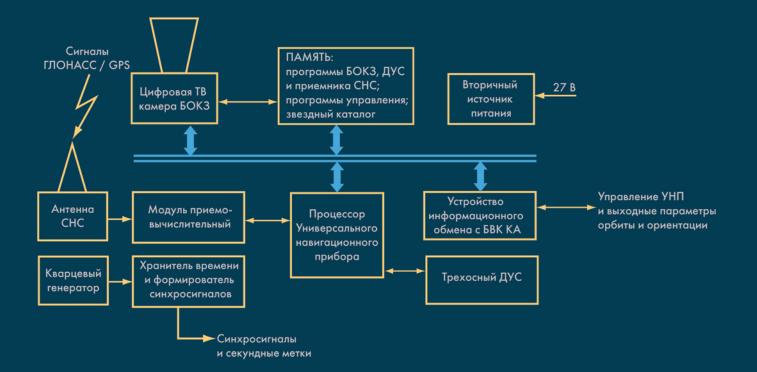
- хранение времени UTC и формирование сетки синхрочастот;
- фильтрация навигационных измерений и расчет параметров орбиты:
- расчет инерциальной ориентации КА;
- расчет текущих значений звездного времени и ориентации КА в геоцентрической гринвичской системе координат;
- расчет с частотой ~10 Гц положения КА и векторов его орбитальной скорости в гринвичской системе координат;
- расчет ориентации КА в орбитальной системе координат;
- расчет с необходимой частотой элементов внешнего ориентирования видеоданных, получаемых системами Д33.

Макет Универсального навигационного прибора Гироскоп внутри

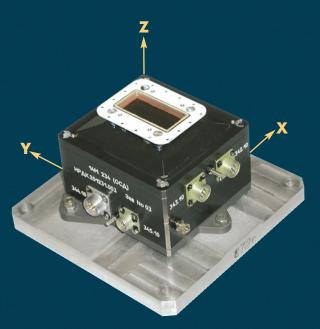
ОПТИЧЕСКИЙ СОЛНЕЧНЫЙ ДАТЧИК

Оптический солнечный датчик (ОСД) предназначен для определения направления на центр видимого диска Солнца.

Направление на Солнце рассчитывается в системе координат прибора по положению на линейном ПЗС пикселей, освещенных солнечным светом, прошедшим через кодирующую маску.


Для повышения надежности и обеспечения необходимой точности кодирующая маска ОСД содержит три группы щелей по три щели в каждой группе. Чтобы идентифицировать группы и щели в группах, расстояния между группами и отдельными щелями сделаны разными.

Геометрическая калибровка ОСД включает следующие процедуры:


- определение положения ПЗСлинейки во внутренней системе координат прибора;
- определение расстояния от щелевой диафрагмы до ПЗС-линейки;определение координат точки пересечения оси Z с плоскостью, в
- определение матрицы перехода от внутренней системы координат к приборной.

которой находится ПЗС-линейка;

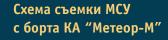
Структура Универсального навигационного прибора

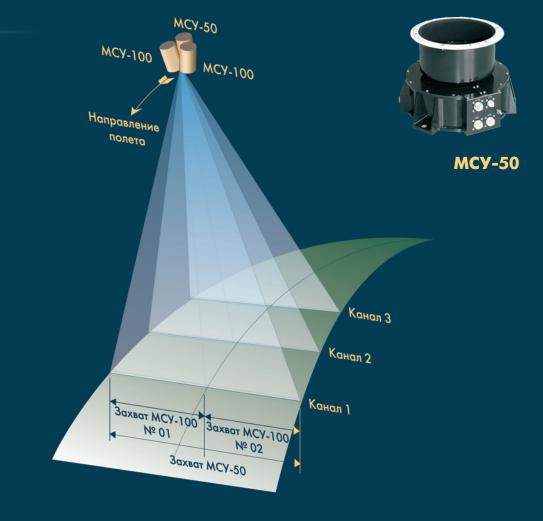
СИСТЕМЫ КОСМИЧЕСКОЙ СЪЕМКИ ЗЕМЛИ

Разрабатываются цифровые многозональные съемочные устройства (МСУ) среднего разрешения для метеорологических и природно-ресурсных КА. Эти устройства позволяют получать изображения земной и водной поверхности в трех спектральных зонах видимой и ближней ИК областей спектра. Информация в каждом МСУ регистрируется на ПЗС-линейках с разными светофильтрами. Первичная обработка видеоданных осуществляется в бортовом сигнальном

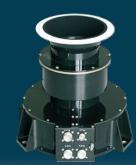
Панорама г. Таруса Калужской области. Весна 2006 г. Съемка выполнена лабораторным макетом МСУ-100 с высокого берега Оки

процессоре.


Первый комплекс в составе двух МСУ-100 и одного МСУ-50 обеспечит получение оперативных видеоданных для проведения гидрометеорологического и экоприродного мониторинга с борта КА "Метеор-М".


Для перспективного Комплекса многоспектральной съемки разрабатывается МСУ-100М и планируется разработка МСУ-200 (фокусное расстояние 200 мм). Эти приборы будут оснащены двумя ПЗС-линейками — одной трехзональной (RGB) и второй, работающей в диапазоне 750—900 нм.

Параметр \ Камера	МСУ-50	МСУ-100	МСУ-200
Фокусное расстояние объектива, мм	50	100	200
Спектральные зоны, нм	410*	550*	450
	480*	650*	550
	630*	830*	650
			830
Количество элементов в строке	7926	7926	10 200
Размер ПЗС элемента, мкм		7 x 7	
Угловое поле зрения, град	58,5	31,3	21
Полоса обзора (с высоты 830 км), км	931	497	250
Проекция пиксела, м	116	58	29
Интерфейс информационного обмена		MIL STD-1553B	
Энергопотребление, Вт	7	7	12
Масса, кг	2,5	3,2	6


^{*} для КА "Метеор-М"

СИСТЕМЫ КОСМИЧЕСКОЙ СЪЕМКИ ЗЕМЛИ

СИСТЕМЫ ЦИФРОВОЙ АЭРОСЪЕМКИ

СИСТЕМЫ ЦИФРОВОЙ АЭРОСЪЕМКИ

В 2004-2005 гг. созданы две цифровые аэрокамеры – ЦТК-140

камера ЦТК-140 разработана на

Цифровая многозональная аэро-

Управление съемкой выполняется ции в бортовом ЗУ.

Преимущества видеоданных, полученных цифровыми аэрокамерами

- линейная передаточная характеристика;
- высокая фотометрическая точность;
- широкий динамический диапазон изображений, что облегчает дешифрирование и позволяет расширить диапазон масштабов создаваемых картографических материалов;
- широкий спектральный диапазон (0,4-1,1 мкм);
- широкая полоса обзора в сочетании с высоким пространственным разрешением.

ЦТК-140

140

22 000 x 3

400-900

(панхр)

8

2500-7000

12-35

2,6-7,7

до 3,2

4-12

линейные ПЗС

7 x 7

ЦМК-70

70

10 200 x 4

450 / 550 / 650

750-900

16

1500-7000

15-70

1,5-7,1

2,0

10-36

Цифровая аэросъемочная камера ЦТК-140

Широкий динамический диапазон цифровых аэрокамер позволяет увидеть детали изображения, закрытые тенью от облаков

и ЦМК-70. Цифровая топографическая стерео-

базе оптического блока аэрофотоаппарата АФА ТЭ-140, на который устанавливается съемный электронный модуль с девятью линейными ПЗС и блок прецизионного определения угловых элементов внешнего ориентирования.

камера ЦМК-70 представляет собой моноблок, состоящий из оптического и электронного модулей. ЦМК-70 позволяет проводить одновременную съемку в трех зонах видимого диапазона (RGB) и в одной зоне ближнего ИК-диапазона.

с помощью установленного на борту самолета компьютера, что позволяет в реальном времени контролировать процесс получения видеоданных и их регистра-

Фокусное расстояние объектива, мм

Количество элементов в строке

Параметр \ Камера

Тип фотоприемников

Размер элемента, мкм

Спектральные каналы, нм

Динамический диапазон, бит

Пространственное разрешение, см

Время непрерывной съемки, часов

Ширина снимаемой полосы, км

Диапазон высот съемки, м

Объем ЗУ видеоданных, ТБ

ПРОЕКТ "ФОБОС-ГРУНТ"

ПРОЕКТ "ФОБОС-ГРУНТ"

Для проекта "Фобос-Грунт" в отделе разрабатываются приборы научного и служебного назначения – ТВ система навигации и наблюдения, звездный координатор БОК3-МФ, оптический солнечный датчик ОСД и система информационного обеспечения комплекса научных приборов.

Телевизионная система навигации и наблюдения (TCHH)

ТСНН предназначена для:

- припланетной навигации;
- выбора места посадки спускаемого аппарата на Фобос;
- поддержки процесса управления посадкой спускаемого аппарата на Фобос;
- детальной съемки поверхности Фобоса.

ТСНН включает четыре телевизионные камеры на основе ПЗСструктур – две широкоугольные (ШТК) и две узкоугольные (УТК), которые расположены попарно на противоположных сторонах несущей конструкции перелетного модуля КА, обеспечивая стереосъемку с двухметрового базиса.

Параметры/Камера	УТК		ШТК
Фокусное расстояние, мм	500		18
Относительное отверстие	1:7		1:2
Количество элементов ПЗС-матрицы		1004 x1004	
Размер элемента, мкм		7,4x7,4	
Разрешение, угл. сек.	3,05		84,8
Поле зрения, град	0,85		23,3
Минимальный угол к Солнцу, град	80		60
Радиометрическое разрешение, бит		12	
Масса, кг	2,7		1,7
Энергопотребление, Вт	8		8
Количество приборов	2		2

Система информационного обеспечения комплекса научных приборов (СИОК)

СИОК предназначена для управления работой комплекса научной аппаратуры КА миссии "Фобос-Грунт" и представляет собой дублированный компьютер с расширенной энергонезависимой памятью.

Основные характеристики

Объем памяти программ, кБ

Масса, не более кг

Напряжение электропитания, В

Потребляемая мощность, не более Вт

Объем энергонезависимой памяти данных, МБ

Интерфейсы информационного обмена МКО НА и КА

Объем оперативной памяти программ, МБ

СИОК решает следующие задачи:

- прием цифровых команд и кода бортового времени из служебных систем КА по информационной магистрали связи СИОК и КА (MKO KA);
- передачу цифровых команд управления и кода бортового времени по внутренней информационной магистрали связи СИОК и

23-32

4,0

1,7

32 128

MIL STD-1553B

0,97

приборов научного комплекса (MKO HA);

- сбор и хранение в энергонезависимой памяти информации от приборов научного комплекса;
- трансляцию в сеансах связи в радиокомплекс КА хранящейся в памяти СИОК информации от приборов научного комплекса.

КАЛИБРОВКА, ИСПЫТАНИЯ И ОТРАБОТКА БОРТОВОЙ АППАРАТУРЫ

Стенд геометрической

калибровки видеокамер

определение элементов внутреннего ориентирования видеокамер и параметров взаимной ориентации внутренней и приборной систем координат

Стенд фотометрической калибровки видеоспектрометрических камер

определение спектральных и энергетических характеристик съемочных устройств

Астрономическая обсерватория

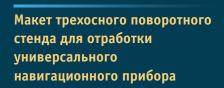
натурная съемка звездного неба звездными координаторами при различных угловых скоростях

Стенд динамических испытаний звездных координаторов

моделирование работы приборов семейства БОКЗ на разных орбитах и при различных режимах ориентации КА

Стенд динамических испытаний систем координатно-временного обеспечения

(перспективная разработка)

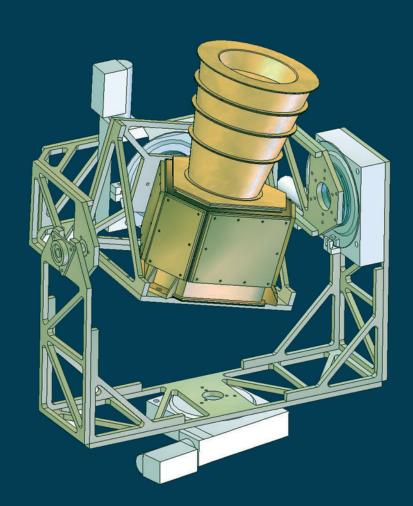

моделирование работы бортовых систем координатно-временного обеспечения

Установка для определения радиационной стойкости электрорадиоизделий (ЭРИ)

проведение испытаний ЭРИ на базе источника Со-60 к воздействию ионизирующего излучения в диапазоне интенсивностей 10^{-4} — 10^{-2} рад/с, близких к естественным условиям функционирования приборов в космосе

Стенд "Фобос-Грунт"

моделирование процесса управления посадкой на Фобос с использованием Телевизионной системы навигации и наблюдения



Проводимые в отделе исследования и разработки приборов всегда сопровождаются созданием программно-алгоритмического обеспечения для:

- поддержки функционирования разрабатываемых бортовых приборов, их контрольно-измерительной аппаратуры, а также стендов калибровки бортовых приборов и моделирования их работы в космосе;
- управления работой в космосе созданных приборов по заданной и корректируемой в полете программе;

- бортовой служебной и тематической обработки проводимых измерений и получаемых видеоданных;
- определения в реальном времени ориентации и местоположения космических аппаратов;
- наземной обработки, координатной привязки и тематического анализа получаемой космической видеоинформации.

Фрагмент изображения, полученный цифровой аэрокамерой ЦТК-140 во время маневра самолета (слева), и результат его автоматической коррекции (справа). Соответствующие объекты показаны одинаковыми цифрами.

наши заказчики

•	Российская академия наук
•	Федеральное космическое агентство (Роскосмос)
•	Ракетно-космическая корпорация "Энергия" (РКК "Энергия")
•	Государственный научно-производственный ракетно-космический центр "ЦСКБ-Прогресс"
•	ОАО "Машиностроительный завод "Арсенал"
•	Научно-производственное объединение им. С.А. Лавочкина (НПО Л)
•	Всероссийский научно-исследовательский институт электромеханики (ВНИИЭМ)
•	Научно-производственное объединение машиностроения)

«КОСМОС — НАУКА и ТЕХНИКА"

АНО "Космос-НТ" учреждена в 2000 г. несколькими научными институтами и промышленными фирмами космического сектора России

	Основные области деятельности
•	Методы аэрокосмической ТВ съемки
	и бортовой цифровой обработки
	получаемых видеоданных
•	Бортовые методы координатно-
	временного обеспечения
	управления полетом КА
•	Методы и программы наземной обработки
	и интерпретации аэрокосмических
	видеоданных
•	Методы и программное обеспечение
	калибровки и испытаний бортовой
	съемочной аппаратуры

Директор: Суханова Элеонора Александровна

Адрес: 117819 г. Москва, Профсоюзная ул., д. 84/32

Телефон/Факс: (7 495) 333-3088 Эл. почта: ano_cnt@ofo.iki.rssi.ru

Адрес: 117819 г. Москва, Профсоюзная ул., д. 84/32 Телефон: (7 495) 333-2445 Факс: (7 495) 330-1200 Эл. почта: lkrasnop@ofo.iki.rssi.ru www.iki.rssi.ru/ofo